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Abstract. Honeynets have become an important tool for researchers
and network operators. However, the lack of a unified honeynet data
model has impeded their effectiveness, resulting in multiple unrelated
data sources, each with its own proprietary access method and format.
Moreover, the deployment and management of a honeynet is a time-
consuming activity and the interpretation of collected data is far from
trivial. In this paper we propose HIVE (Honeynet Infrastructure in Vir-
tualized Environment), a new highly scalable automated data collection
and analysis architecture, which is built on top of proven FLOSS (Free,
Libre and Open Source) solutions integrated and extended with new
tools we developed. We use virtualization to ease honeypot management
and deployment, combining both high-interaction and low-interaction
sensors in a common infrastructure. We address the need for rapid com-
prehension and detailed data analysis by harnessing the power of a re-
lational database system, which provides centralized storage and access
to the collected data while ensuring its constant integrity. Finally, we
present some techniques for the active monitoring of centralized botnets
we integrated in our infrastructure.
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1 Introduction

In last years there has been a dramatic increase in malware activity on the Inter-
net: according to [29], the last two years saw a 1500% increase in threat volume,
with major contributions from botnet creation and expansion. A constant mon-
itoring of criminal activity on the network is needed to identify, prevent and
actively counteract the impeding menaces. To be able to successfully defend
itself, every networked company has to carry the burden of threat monitoring,
building and maintaining a dedicated infrastructure. Due to the recent shift
from mass attacks (mostly represented by viruses) to targeted attacks, which
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are performed for a specific purpose (data theft, disruption of operations, etc.),
threat control has become even more compelling.

Thanks to The Honeynet Project [1] and similar initiatives, the employ-
ment of honeypots for threat monitoring has grown into wide usage. There are
now several honeynets monitoring the Internet, deployed both by academic and
commercial organizations, for research and defense purposes. Most of these hon-
eynets are independent and disconnected: they are owned and maintained by
a single organization and they serve a specific purpose; the data they collect
is often kept confidential, especially for commercial organizations. Moreover,
each and every honeynet uses a different, usually homegrown, data collection
and analysis system, impairing interoperability with external systems. Even if
a company wants to share its honeynet data, it is often difficult to integrate
different data sources in a unified system. The mwcollect Alliance [2] has taken
a step in the right direction, building a single infrastructure for the collection
of honeynet data and the monitoring of threats in a collaborative fashion. But
the Alliance is a centralized system, essentially closed, for safety reasons: there
is no public information on their infrastructure.

We believe there is a need for an open honeynet infrastructure, to lower
the barrier needed to setup and operate an honeypot network and to ease data
collection and analysis. The openness needs to be both structural and material:
open and common data schemas make the sharing of information effortless,
thus encouraging it. On the other hand, the use of Open Source software to
implement the actual infrastructure makes it easy for everyone to study, build,
audit and improve it, allowing the whole community to benefit from individual
efforts.

The remainder of this paper is organized as follows: in Section 2 we discuss
previous works in this area and its relation with our research. The architecture
and implementation of HIVE (Honeynet Infrastructure in Virtualized Environ-
ment), our proposed honeynet infrastructure, is described in detail in Section
3. We present some preliminary results from our testbed system in Section 4.
Finally, in Section 5 we conclude and lay out the grounds for some future works.

2 Background and related work

The use of honeypots for malware detection and capture is now a well-
established field. Two major kinds of honeypots have been developed: low-
interaction honeypots simulate vulnerable services or environments to lure mal-
ware into attacking them and capture its sample. They are easy to deploy and
require low maintenance, but the simulation is imperfect and they can often
be detected or circumvented. The major Open Source products in this area are
Nepenthes [3], HoneyTrap [30] and Amun [7]. High-interaction honeypots, on
the other hand, use a full fledged system as a bait; the honeypot machine is
periodically analyzed, malware is collected and the system is rebuilt to a clean
state. This kind of honeypot can potentially capture more malware samples,
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Fig. 1. Block diagram of HIVE architecture.
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but is also much more expensive to deploy and maintain. There are also legal
liability concerns: we have to avoid that the honeypot participates or starts
a potentially dangerous attack to external machines (e.g. a denial of service).
Nowadays, high-interaction honeypots are often implemented using virtualiza-
tion, which eases most of their drawbacks but potentially makes them easier to
detect and thus vulnerable to targeted attacks [11, 34].

The HoneyBow project [33] deployed a sensor infrastructure using virtual-
ized VMWare systems combined with Nepenthes [3] sensors to capture malware
samples. While part of the software they developed is freely available at [24] it
has not received any significant update in the last two years. The HoneyBow
project also fails to detail their data storage and analysis system, focusing in-
stead on the collection infrastructure and the analysis results of collected data.

In [19] Rajab et al. developed a botnet measurement infrastructure using
Nepenthes sensors and a physical honeynet. They focused on IRC bots, devel-
oping a series of tools to study and infiltrate these kinds of botnets. While they
make the collected data available to the research community, to our knowledge
the developed software has not been released.

3 Implementation of HIVE

We chose to structure HIVE on a three-tier architecture, shown in Fig. 1, to
fully decouple data acquisition from data memorization. This decision has a
twofold advantage: it is easier to build and scale the whole system, and if a
honeypot sensor is compromised there is no way it can harm (or even see) the
data store.

The first stage is the actual honeynet, which is implemented using virtualiza-
tion and features a combination of low-interaction and high-interaction sensors.
Malware samples acquired from the honeypots are sent to a gateway, which
validates and preprocesses them; samples are then sent to the data store for
storage and analysis. Malware samples are analyzed with the help of external
services, which provide reports on the samples’ behavior to help classification.
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Fig. 2. Our virtual honeynet structure.

Monitoring facilities query the data store to obtain threat information (e.g.
botnet controller servers’ addresses) and oversee their development.

The architecture is fully scalable: adding more sensors is only a matter of
creating new virtual machines or adding other physical systems. If a honeypot is
damaged or compromised it cannot affect other sensors and it can be easily re-
built or replaced. Structure and implementation of the honeynet and its sensors
is described in Section 3.1. The gateway (which itself can be replicated with no
effort) allows preliminary filtering of honeypot data: we can potentially remove
bogus samples before sending them to the data store, avoiding to waste sys-
tem resources on their analysis. The data store, finally, can be made redundant
using database replication, and itself uses multiple providers for the samples’
analysis, to achieve better accuracy and lower the samples turnaround. This
part of HIVE, which can be considered its core, is presented in Section 3.2.

3.1 Honeynet sensors

We chose to implement our honeypot sensors using virtualization. As noted be-
fore in [33], virtualization dramatically cuts down the efforts needed to deploy
and manage the honeynet. Moreover, the ability to simulate an arbitrary net-
work topology on a single physical machine allows us to dynamically reconfigure
the honeynet. This choice is not mandatory: our infrastructure works equally
well with virtual and physical honeypots, but in the latter case restoring the
machine to a clean state will require considerably more efforts.

We based our implementation on VirtualBox [22], an Open Source virtu-
alization product. VirtualBox has similar performance to its more prominent
competitor VMWare, which has been used in honeypot research [33], is multi-
platform and features some advantages from our point of view. Besides being
Open Source, it’s fully scriptable using a command-line interface or, in the last
1.6.0 version, a standards-compliant web service. The latter feature allows to
easily automate the honeypots management operations using a few shell scripts.
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Compared to Xen, another leading Open Source virtualization product, Virtual-
Box does not require dedicated hardware support to execute unmodified guests
(such as Microsoft closed-souce operating systems). Our back-end is, of course,
product-agnostic and is not tied to this particular choice.

We believe that using a combination of low-interaction and high-interaction
honeypots allows us to get the best of both worlds; through the use of virtual-
ization, we are able to nullify the traditional problems (difficult and expensive
deployment and maintenance) associated with high-interaction systems. We are
currently using Nepenthes [3] for the low interaction sensors and a Gen-IIT Win-
dows honeynet [4] for the high-interaction. An HoneyWall [25] ‘Roo’ gateway,
itself running in a VM (Virtual Machine), monitors incoming and outgoing traf-
fic to the high-interaction honeynet. It is important to limit outgoing traffic, to
avoid being part of an attack or a denial-of-service and thus preserving legal
liability [11].

The Windows honeypots are automatically rebuilt twice a day from a clean
snapshot. Before the rebuild, their disk contents are analyzed: we register the
differences with a clean installation and send to the gateway the new executables
found — potential malware samples — for further analysis. The deployment and
rebuilding of VMs is currently implemented with the VirtualBox command-line
utility (VBoxManage). Our rebuild script powers the VM off and mounts the
virtual disk on the host system; the directory tree is then compared post-mortem
to a clean image using the standard Unix tool diff. We found this procedure to
be the most reliable, although rather expensive. Preliminary testing of client-
based collection tools, such as MwWatcher and MwFetcher from the HoneyBow
project [24], showed poor reliability and a large number of missed samples. Us-
ing the VirtualBox snapshotting features was also not an option — snapshots
are stored in a proprietary format and they cannot be easily mounted for anal-
ysis. Once the samples have been collected, we clone the clean image into a
new virtual disk (using the built-in VirtualBox cloning facility) which is then
attached to the VM, replacing the old one. Our script finally restarts the ma-
chine, which becomes ready for a new collection round. The collected samples
are fed to a Python script, which submits them to the gateway with a properly
formatted HTTP request.

The honeynet structure is shown in Fig. 2. Linux software bridging [26] inter-
connects HoneyWall and the Nepenthes sensors with the darknet; the Windows
honeypots are connected through a VirtualBox internal network (an isolated
virtual switch) to HoneyWall internal interface.

3.2 Core infrastructure

Once malware samples have been acquired, they must be processed, stored and
analyzed. The life cycle of a malware sample in HIVE is shown in Fig. 3. The
gateway exposes a web service to receive samples from the sensors; every sample
has some metadata attached (file details, name of the sensor, date of collection
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Fig. 3. Life cycle of a malware sample in HIVE.

and cryptographic hash). We have currently implemented the web service using
a PHP script which receives data via HT'TP POST.

A simplified version of the Entity-Relationship diagram for the database
schema is shown in Fig. 4. We chose to rely on PostgreSQL 8.3, an Open Source
object-relational DataBase Management System (DBMS): it supports most of
the major SQL:2003 features [28], including referential integrity, transactions,
views, stored procedures and triggers. We made extensive use of foreign keys
constrains to ensure data integrity and implemented most of the analysis logic
using stored procedures and triggers, in a mixture of pl/pgSQL and pl/Python.

Our data model is centered around samples, which are uniquely identified
using their MDb5 digest and stored in binary fields in the database. The addition
of a new sample triggers its submission to external services, which analyze it
and return a report. We use the reports to categorize the samples and extract
useful data.

HIVE currently relies on the external services offered by Anubis [12, 5] and
CWSandbox [23, 32] for the analysis of malware samples. Both services run
the malware in a controlled environment, tracing its actions and logging net-
work connections to provide a behavioral analysis. We use CWSandbox, which
provides a machine-parsable XML report and a PCAP [15] network trace, as
our main provider and rely on Anubis (whose reports are human-readable web
pages) for verification and human cross-checking. CWSandbox provides also a
VirusTotal [10] report we use to identify the malware according to antivirus
classification. Our infrastructure can be integrated, in principle, with any anal-
ysis service available, either in-house or outsourced; we are currently evaluating
integration with Joebox [13] and Norman SandBox [16].
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Fig. 4. Simplified Entity-Relationship diagram for HIVE database.

We have also implemented a pre-filtering stage, which allows HIVE to pre-
liminary screen the samples at gateway or analysis layer for known malware,
thus reducing the load on external services. The analysis currently relies on the
Open Source antivirus scanner ClamAV [21], but could be extended to support
other antivirus engines.

3.3 Data analysis and active monitoring

Our database schema currently accounts for IRC and HTTP centralized botnets
and generic network worms. We make an extensive use of database views to
aggregate data and present it in a coherent fashion. Views allow also to disclose
useful data without compromising the necessary anonymity on the location of
honeypot sensors and attack targets. We currently lack a full-fledged reporting
interface: data analysis is currently done directly querying the database.

We wrote a Google Maps mashup to graphically show the geographic dis-
tribution of botnet C&C (Command and Control) centers; the centers’ IP ad-
dresses were geolocated using MaxMind GeoLite City [14]. This example shows
how easy is to access data and mangle it in the needed way.

Using the data collected during analysis we have all the information needed
to connect to the botnet C&C and impersonate a bot. To study IRC botnets, we
extended the Infiltrator Open Source software [8] by Jan Gobel to interface with
our database. Infiltrator connects to the C&C and logs every communication on
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the channel, providing insight in the botnet operations and targets. To achieve
a similar analysis for HT'TP botnets, we wrote httpmole, a Python program
which periodically connects to the command center and reads its reply. Since
the reply is arbitrary and different botnets use different ad hoc control software,
some form of fingerprinting is needed to be able to parse these messages in a
useful way. While the software is still not ready for production, we are currently
working in this direction.

3.4 Caveats and pitfalls

The use of virtual machines for the honeypot implementation opens them to
a risk (albeit small) of being detected. Virtualization detection is rather easy
and several works have been published [11]; nevertheless, we are not aware of
any widespread malware checking for a virtualized environment. As studied by
[17], virtualization may pose a security risk: if an attacker is able to exploit
a weakness in the VM software, he may be able to execute arbitrary code on
the host system, potentially breaking into it. An automated periodic rebuild of
the host systems would address this concern. On the other hand, the eventual
compromise of a honeypot sensors is not a catastrophic event: while the sensor
could send bogus data, it has no way to directly access the database. In case
of a suspect break-in, it is rather trivial to setup the gateway to ignore traffic
from a specific sensor until the situation is investigated.

The strategic weakness of every honeypot is its secrecy: if an attacker were
to discover the honeypot’s address, he could blacklist it or send targeted attacks
trying to disable, poison or subvert it. As shown by [34], honeypots can poten-
tially be detected by specially crafted malwares; refer to [6] for a HoneyWall
targeted example. While there are no reports of current malware in the wild
exploiting such techniques, this is a legitimate concern.

To extract meaningful statistics, it’s important to have an even distribution
of honeynets, both in geographical and in IP address space. In order to acquire a
good understanding of Internet threats a very large number of sensors would be
necessary. On the other hand, a global knowledge must be completed by a good
understanding of local malicious activities — as shown by [18], it’s essential to
deploy geographically local sensors.

The critical point of HIVE is the database — the DBMS server represents
a single point of failure, which can be overcome using replication techniques
to duplicate it on multiple machines. Slony [27] is an Open Source replication
system for PostgreSQL which could be useful for this purpose.

4 Preliminary results
We built a simple testbed system to evaluate HIVE feasibility. We used only

two physical machines for simplicity: one ran the virtual honeynet, the other
implemented the gateway and the data store. Our honeynet was composed of
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two Windows systems and a Nepenthes sensor, on a small darknet of three pre-
viously unused IP addresses on a commercial network. We provided the high-
interaction honeypots with 2000 Server and XP Professional, both unpatched
and with default configurations. A vast majority of malware targets these Mi-
crosoft systems: XP is probably the most widespread client system, while the
presence of 2000 Server allows us to capture samples attacking server-grade
services (such as IIS).

During a month of operation, we detected more than 14,000 malware samples
(about 13,000 unique), classified as in Fig. 5. It looks like HTTP bots are a
negligible part, compared to other threats. The ‘worm’ samples — about a half
of the total — are due to the Allaple polymorphic worm, which spreads through
Microsoft systems using network share and buffer overflow vulnerabilities [20].
The ‘unfiled’ samples are currently not classified: they may be corrupt samples
(which are screened but currently not included in results) or types of malware
still unknown to our system or to the analysis services we rely on.

Fig. 6 shows the weekly samples breakdown by threat type. There has been
a spike in the sixth week, due to a specific IRC bot, which spread over 2,000
samples on one honeypot, all tied to a single C&C center. We also noticed a
slight decrease in Allaple infections in the last two weeks; we would need to
collect more data in the following weeks to be able to confirm the trend. Due to
the strong locality of our sensors, we would require data from other honeynets
to be able to draw conclusive results.

In Fig. 7 and Fig. 8 we present the preliminary results from our monitoring
infrastructure. We tracked about 50 different IRC botnets for two weeks, logging
the activity on the control channel. The majority of botnet control is performed
with private messages (PRIVMSG), and most commands issued are network
scans and botnet expansion.
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5 Conclusions and future works

We have proposed a new three-stage open honeypot architecture for malware
data collection and analysis. We believe our solution, if widely deployed, could
significantly ease the sharing of collected data. Our architecture is fully open:
anyone can implement it using Open Source software.

In the future, we plan to integrate our database with the attack informa-
tion collected by HoneyWall, to correlate attack vectors with malware samples.
We are also investigating PE Hunter [31] as a possible additional sensor. Our
honeypot management tools currently rely on the VirtualBox command-line
interface; we plan to rewrite them to use the web service facility introduced in
VirtualBox 1.6.0.

Our database schema is currently focused on centralized botnets; there is
no support for P2P botnets [9], which are an increasing threat. We plan to add
at least some basic support for P2P botnets in the future.

HIVE currently has a strong dependency on CWSandbox — it’s our main
source of analysis data on captured samples. In the future, we plan to integrate
more tightly several other analysis services, to provide a level of redundancy
and cross-checking on analysis results and spread the load on multiple systems.

Finally, we will write a reporting interface to expose interesting data and
trends in a user friendly way — currently, obtaining statistical data requires
querying the database using SQL. We believe that the easy availability of ag-
gregate data on malware threats will greatly help developing new countermea-
sures.
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Availability

Implementation details for the HIVE platform, the database DDL and our
programs source code are all available at http://netlab-mn.unipv.it/hive or
contacting the authors. Future developments and data reports will be published
at the same location.
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