

DEVELOPMENT OF A WIRELESS SENSOR NETWORK FOR STRUCTURAL HEALTH MONITORING

Advisor: Prof. Paolo E. Gamba

Co-Advisor:

Dott. Emanuele Goldoni

Master Degree Thesis of: Marco Beltrame

358880/27

10.12.2008

Introduction: wireless sensor networks

WIRELESS NETWORKS

ADVANTAGES

- Costs
- Mobility
- Flexibility

DISADVANTAGES

- Battery Consumption
- Reliability
- Security

A WIRELESS SENSOR NETWORK:

consists of a large number of node:

- deployed in the environment
- equipped with sensors
- provisioned with short-range wireless communication capabilites
- battery-power

Types of motes and WSNs' topology

TYPES OF MOTES

- Mote gateway
- Mote sensor

TOPOLOGY OF WSNs

- Star
- Mesh
- Tree

APPLICATIONS:

- Monitoring
- Supervision
- Control

SHM (Structural Health Monitoring)

- Measurement of vibrations
- Experiments in the world

Introduction: EUCENTRE and W-TREMORS

EUCENTRE (NON-PROFIT FOUNDATION)

- Applied research in the field of seismic engineering
 - Simulations on real buildings
 - Analytical models

W-TREMORS

- Platform was engineered and implemented:
 - Ex-novo
 - Alternative to existing wired system
 - Wireless Tremors vibRation and Earthquakes MonitoRing

INTRODUCTION W-TREMORS CONCLUSION

Introduction: models and standard motes

TYPES OF HW

- Motes with integrated sensors.
- Motes that use a small O.S. etc...

THE PLATFORM SQUIDBEE

- Arduino board with ATMega168 processor.
- Radio XBee of DiGi.
- SquidBee: is a platform that is not designed for SHM.

• Sensor used is a Kistler's accelerometer.

COMUNICATION PROTOCOL 802.15.4

- Physical layer
- MAC layer

W-TREMORS: restraints and requirements

REQUIREMENTS OF THE PLATFORM

- Synchronization
- Absence of collisions
- Real-Time
- Certainty on sender's ID

INTRODUCTION

W-TREMORS CONCLUSION

CONSTRAINS OF THE PLATFORM

- Mono-task
- CSMA/CA at MAC layer
- Trasmission's time
- Maximum resolution is ms

W-TREMORS: synchronization

INTRODUCTION

W-TREMORS CONCLUSION

SYNCHRONIZATION

LATENCY ERROR

- Managing latency errors of each motes
- Managing synchronization of the whole platform.

- Send-time
- Access-time
- Propagation-time
- Receive-time

W-TREMORS: drift

- Changes of physical clock.
- Drift Rate: measurement unit. •
- Drift Rate: 83 * 10^{^-6} ~ 1 ms every 12 s

INTRODUCTION

W-TREMORS CONCLUSION

Arduino's clock drift

4000

3500

3000

2500

2000

Colonna D

Negressione in eare per Colonna D

W-TREMORS: global synchronization

INTRODUCTION

W-TREMORS CONCLUSION

SYNCHRONIZATION ALGORITHMS FOR WSN

- RBS (Reference Broadcast Synchronization)
- TPSN (Timing-sync Protocol for Sensor Network)
- FTPS (Flooding Time Synchronization Protocol)

ALGORITHMS USED FOR W-TREMORS

- Star typology
- RBS
- Without reference (is single hop!)
- Motes wait broadcasting signal

W-TREMORS: TDMA e Bursts

TDMA BUILT AT THE APPLICATION LAYER

- Define transmissions' time-slot for each motes.
- Schedule the use of the channel.
- Reduces collisions.

PROBLEM

- Displacement due to drifts results in:
 - Delays of trasmissions
 - Unrecognizable packages.

SOLUTION

- Build an application-layer PDU including the ID of the mote
- Bursts: insert two or more measurements in a single PDU

E.O.P

(0x0A e 0x0D)

Tailer

W-TREMORS: Bursts

ADVANTAGES

- Less PDU sent by each node
- More motes are allowed inside the sensor network

INTRODUCTION W-TREMORS CONCLUSION

W-TREMORS: network setup

W-TREMORS: test at EUCENTRE

W-TREMORS: test at TLC lab (Mantova)

INTRODUCTION

W-TREMORS CONCLUSION

Conclusion: considerations

• Need to add a guard band at high frequencies.

• Developed code is modular and open source

INTRODUCTION

W-TREMORS CONCLUSION

Conclusions: future developments

• DataBase: improve and speed-up data extraction.

- Remote reset of node (now this is a missing feature)
- Engineering an external case for sensor nodes.

INTRODUCTION

W-TREMORS CONCLUSION

The End

